專題演講 主講人:王建玲院士 (美國加州大學戴維斯分校)

題 目:Functional data analysis in the age of AI
主講人:王建玲院士 (美國加州大學戴維斯分校)
時 間:114年12月15日(星期一)上午10:40-11:30
(上午10:20-10:40茶會於綜合一館428室舉行)
地 點:綜合一館427室
摘要
In this talk, we present two applications of deep neural networks (DNNs) for functional data. Traditional methods require dimension reduction via pre-selected basis expansions, which may not be optimal. We propose an adaptive approach using a DNN with a basis-layer, where hidden units act as basis functions through micro neural networks. This architecture focuses on relevant information, improving dimension reduction and outperforming other DNNs in classification and regression tasks. Additionally, we demonstrate using transformers to effectively impute irregularly and sparsely observed functional data.
*Based on joint work with Ju-Sheng Hong, Jonas Mueller and Juwen Yao.
