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In many studies, the questionnaire is a common tool for surveying. There are two kinds of questions
designed: single-choice questions and multiple-choice questions. For single-choice questions, the method-
ology for analyzing it has been provided in the literature. However, the analyses of multiple-choice questions
are not established as in depth as those for single-choice questions. Recently, there has been a lot of lit-
erature published about testing the marginal independence between two questions involving at least one
multiple-choice question. However, another important problem regarding this topic is to rank the responses
in a multiple-choice question. The issue is whether there are significant differences in the popularity of
particular responses within the same question. In this paper, methodologies for ranking responses are
proposed.

Keywords: single-choice question; multiple-choice question; survey; likelihood ratio test; Wald test;
ranking consistency

1. Introduction

The questionnaire method is a widely-used tool for researchers in any field to collect information.
The researchers list questions that they are interested in, in a questionnaire, and analyze the
survey data collected from interviewing the respondents. There are two kinds of questions: single-
choice questions and multiple-choice questions. The analyses of single-choice questions have been
investigated in the literature and textbooks. Approaches of analyzing multiple-choice questions
have been lacking until recently. Umesh [5] first discussed the problem of analyzing multiple-
choice questions. Agresti and Liu [1] discuss the modeling of multiple-choice questions. Loughin
and Scherer [4], Decady and Thomas [3] and Bilder et al. [2] propose several methods for testing
marginal independence between a single-choice question and a multiple-choice question.

The above-mentioned papers focus on the analyses of dependence between a single-choice
question and a multiple-choice question. However, for most researchers, they are also interested
in ranking the responses in a question according to the probabilities of responses being chosen.
We have not found any literature discussing this problem. Thus, in this paper, methods of ranking
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responses are provided. We first focus on ranking two specific responses that we are interested
in. For example, a company is designing a marketing survey to help develop an insect killer. The
researchers list several factors, including high quality, price, packaging and smell that could affect
the sales market. Especially, they are interested in comparing the two factors of high quality and
sales price. Since a high quality product has a higher manufacturing cost, to balance the profits,
the sales price needs to be raised. The possibility exists that most consumers are more concerned
about the price than the quality of the product. Thus, researchers want to know which factor of
the two is more important for most consumers. Suppose that a group of individuals are surveyed
on purchasing an insect killer. They are asked to fill out questionnaires which list all the questions
that we wish to address to each respondent. The following is a multiple-choice question in the
questionnaire:

Question 1 Which reasons are important to you when considering the purchase of an indoor
insect killer? (1) price (2) high quality (3) packaging (4) smell (5) others.

In this example, besides being interested in ranking the two factors of sales price and high quality,
the researchers also want to investigate the importance of the other responses.

First, we consider ranking two specific responses. For the general case, assume that a multiple-
choice question has k responses, v1, . . . , vk , and we interview n respondents. Each respondent is
asked to choose at least one and at most s answers for this question, where 0 < s ≤ k. If s = 1, it
is a single-choice question. There are a total of c = Ck

1 + · · · + Ck
s possible kinds of answers that

respondents will choose. Let ni1,...,ik denote the number of respondents selecting the responses vh

and not selecting vh′ if ih = 1 and ih′ = 0, and pi1,...,ik denotes the corresponding probability. For
example, when k = 7, n0100100 denote the number of respondents selecting the second and the
fifth responses and not selecting the other responses. Thus, the pmf function of ni1,...,ik is

fs(ni1···ik ) = I

⎛
⎝ k∑

j=1

ij ≤ s

⎞
⎠ n!∏

ij =0 or 1 ni1···ik !
∏

ij =0 or 1

p
ni1 ···ik
i1···ik , (1)

where I (·) denotes the indicator function. Let mj denote the sum of the number ni1,...,ik such that the
j th response is selected, and πj denote the corresponding probability, that is mj = ∑

ij =1 ni1,...,ik

and πj = ∑
ij =1 pi1,...,ik . Note πj is called a marginal probability of response j . Also let mjl

denote the sum of the number ni1,...,ik such that the j th and lth responses are selected, and πjl

denote the corresponding probability. Then mjl = ∑
ij =il=1 ni1,...,ik and πjl = ∑

ij =il=1 pi1,...,ik .
For ranking the importance of two specified responses, say response 1 and response 2 in

Question 1 from the survey data, we will consider the two-sided test:

H0 : π1 = π2 vs H1 : π1 �= π2, (2)

which is equivalent to

H ∗
0 : π1 − π12 = π2 − π12 vs H ∗

1 : π1 − π12 �= π2 − π12. (3)

If (2) is rejected, then we can rank the response with larger mj first.
In Section 2, we will propose several methods to test (2). In Section 3, simulation results of

comparing the rejection rates and the powers of the methodologies are presented. Besides ranking
two responses, a rule for ranking all responses is proposed in Section 4. A ranking consistency
property is also introduced in Section 4.

2. Testing approach

In this section, we will propose three methods for testing (2).
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2.1. Wald test

A Wald test is a test based on a statistic of the form

Zn = Wn − (π1 − π2)

Sn

,

where Wn is an estimator of π1 − π2, and Sn is a standard error for Wn. An unbiased estimator of
pi1,...,ik is ni1,...,ik /n, which is also a maximum likelihood estimator (MLE). Let π̂1 = m1/n, π̂2 =
m2/n and π̂12 = m12/n. We can use π̂1 = m1/n and π̂2 = m2/n as estimators of π1 and π2

respectively. Note that π̂1 − π̂2 = (π̂1 − π̂12) − (π̂2 − π̂12). By the facts E(m1) = nπ1, E(m2) =
nπ2 and cov(π̂1 − π̂12, π̂2 − π̂12) = −(π1 − π12)(π2 − π12)/n, we have

E
(
π̂1

) = π1, E
(
π̂2

) = π2, E
(
π̂12

) = π12,

and

Var
(
π̂1 − π̂2

) = Var
(
(π̂1 − π̂12) − (π̂2 − π̂12)

)
= (π1 − π12)(1 − π1 + π12)/n + (π2 − π12)(1 − π2 + π12)/n

+ 2(π1 − π12)(π2 − π12)/n

= (π1 − π12)(1 − π1 + 2π2 − π12)/n (4)

+ (π2 − π12)(1 − π2 + π12)/n.

When s = 1, π12 is zero, which leads to

Var
(
π̂1 − π̂2

) =

⎧⎪⎨
⎪⎩

π1(1 − π1)/n + π2(1 − π2)/n + 2π1π2/n if s = 1,

(π1 − π12)(1 − π1 + 2π2 − π12)/n+
(π2 − π12)(1 − π2 + π12)/n otherwise.

(5)

Under the null hypothesis H0 in (2) and based on the central limit theorem, the statistics

π̂1 − π̂2√
Var(π̂1 − π̂2)

(6)

converges in distribution to a standard normal random variable when n is large. Since π1, π2

and π12 are unknown, we can use π̂1, π̂2 and π̂12 to substitute π1, π2 and π12 in (5). Thus, for
testing (2), H0 is rejected if the absolute value of (6) is greater than zα/2, where zα/2 is the upper
α/2 cutoff point of the standard normal distribution.

2.2. Generalized score test

In Section 2.1, π1, π2 and π12 in Var(π̂1 − π̂2) are replaced by π̂1, π̂2 and π̂12 in the test statistic.
In this section, we consider the variance under the null hypothesis in (2), that is, π1 = π2. Thus,
we have

Varπ1=π2

(
π̂1 − π̂2

) =
{

2π1/n if s = 1,

2(π1 − π12)/n otherwise.
(7)

By the central limit theorem, under H0, the statistic

(π̂1 − π̂2)/

√
Varπ1=π2

(
π̂1 − π̂2

)
coverges to a standard normal distribution when n is large. We can use (π̂1 + π̂2)/2 and π̂12

as substitutes for π1 and π12 in the variance. Hence, for testing (2), when 1 < s ≤ k, the null



D
ow

nl
oa

de
d 

B
y:

 [W
an

g,
 H

si
uy

in
g]

 A
t: 

12
:0

6 
25

 M
ar

ch
 2

00
8 
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hypothesis is rejected if √
n ∗ |π̂1 − π̂2|√

(π̂1 + π̂2 − 2π̂12)
> zα/2.

When s = 1, the null hypothesis is rejected if
√

n ∗ |π̂1 − π̂2|√
π̂1 + π̂2

> zα/2.

This approach is similar to the score test of testing a marginal probability equal to a specified
value. Hence we call this approach a generalized score test.

2.3. Likelihood ratio test

The third approach is the likelihood ratio test (LRT). For testing H0 : π1 = π2, let

�12 = L( ˆ̂pi1,...,ik )

L(p̂i1,...,ik )
, (8)

where L is the likelihood function, and ˆ̂pi1···ik and p̂i1,...,ik denote the MLE of pi1,...,ik under the
restricted parameter space π1 = π2 and the whole parameter space, respectively. Thus, we have

p̂i1,...,ik = ni1,...,ik /n.

When s = 1,

ˆ̂pi1,...,ik =

⎧⎪⎨
⎪⎩

(n100···0 + n010···0)/(2n) if i1 = 1,

(n100···0 + n010···0)/(2n) if i2 = 1,

ni1,...,ik /n otherwise,

(9)

which is easily to be interpreted because under π1 = π2, ˆ̂p10···0 and ˆ̂p010···0 should be equal to
(p̂10···0 + p̂010···0)/2.

When 1 < s ≤ k, by solving the equations of derivatives of the likelihood ratio functions with
respect to pi1···ik being zero, we have

ˆ̂pi1,...,ik =

⎧⎪⎨
⎪⎩

S · ni1,...,ik /(2n(
∑

i1=1,i2=0 ni1,...,ik )) if i1 = 1, i2 = 0,

S · ni1,...,ik /(2n(
∑

i1=0,i2=1 ni1,...,ik )) if i1 = 0, i2 = 1,

ni1,...,ik /n otherwise,

(10)

where

S =
∑

i1=1,i2=0

ni1,...,ik +
∑

i1=0,i2=1

ni1,...,ik .

Equation (10) is not as easy as (9) to be interpreted. However, using the fact that the equation∑
i1=1 ni1,...,ik = π1 = π2 = ∑

i2=1 ni1···ik is equal to

∑
i1=1,i2=0

ni1,...,ik =
∑

i1=0,i2=1

ni1,...,ik , (11)

the maximum likelihood estimators of pi1,...,ik which are not in the set A = {pi1,...,ik : i1 = 1, i2 =
0} and B = {pi1,...,ik : i1 = 0, i2 = 1} should be the same as p̂i1,...,ik because they are not affected
by the restriction (11).
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For the other pi1,...,ik , in the case of i1 = 1 and i2 = 0 or the case of i1 = 0 and i2 = 1, under

(11), ˆ̂pi1,...,ik can be interpreted as ni1,...,ik /
∑

i1=1,i2=0 ni1,...,ik the proportion of S/(2n).
According to the asymptotic theory of the likelihood ratio test, −2 log �12 has a limiting

distribution with one degree of freedom. For testing (2), H0 is rejected if

−2 log �12 > χ2
1,α,

where χ2
1,α is an upper α cutoff point of the chi-square distribution with one degree of freedom.

3. Simulation result

In this section, we will use Question 1 as an example to compare the three methods proposed in
Section 2. Assume that we interview n respondents. Each respondent is allowed to choose at least
one answer and at most five answers in Question 1.

Example 3.1 Assume that the true probabilities pi1,...,ik as given in Table 1, which leads to
π1 = π2 = 0.6 and π3 = π4 = π5 = 0.5143. For testing (2), Table 2 lists the rejection rates of
the three methods when the level of the tests is 0.05. Here the replication is 10,000.

Example 3.2 Assume that the true probabilities pi1,...,ik are as given Table 3, which leads to
π1 = π2 = 0.48, π3 = π4 = π5 = 0.5086. For testing (2), Table 4 lists the rejection rates of the
three methods when the level of the tests is 0.05. Here the replication is 10,000.

Example 3.3 In this example, we list two cases of π1 �= π2 and compare the powers of the
three tests when the level of the tests is 0.05. Here we only show the probability of πi instead of
pi1,...,i2 . Table 5 lists the powers of three tests corresponding to a set of probabilities satisfying
π1 = 0.658, π2 = 0.578, π3 = 0.481, π4 = 0.505, and π5 = 0.479. Table 6 lists the powers of

Table 1. The probability of pi1i2i3i4i5 .

p00000 p10000 p01000 p00100 p00010 p00001 p11000 p10100
0 0.025 0.025 0.0286 0.0286 0.0286 0.05 0.025
p10010 p10001 p01100 p01010 p01001 p00110 p00101 p00011
0.025 0.025 0.025 0.025 0.025 0.0286 0.0286 0.0286
p11100 p11010 p11001 p10110 p10101 p10011 p01110 p01101
0.05 0.05 0.05 0.025 0.025 0.025 0.025 0.025
p01011 p00111 p11110 p11101 p11011 p10111 p01111 p11111
0.025 0.0286 0.05 0.05 0.05 0.025 0.025 0.05

Table 2.Assume the true probabilities is Table 1 which satisfy
π1 = π2. For testing H0 : π1 = π2, the rejection rates of
three methods for n respondents are listed.

n

100 300 500 1000

Wald 0.0418 0.0383 0.0423 0.0379
score 0.0458 0.0457 0.0523 0.0478
LRT 0.0485 0.0471 0.0524 0.0478
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Table 3. The probability of pi1i2i3i4i5 .

p00000 p10000 p01000 p00100 p00010 p00001 p11000 p10100
0 0.05 0.05 0.01714 0.01714 0.01714 0.01 0.05
p10010 p10001 p01100 p01010 p01001 p00110 p00101 p00011
0.05 0.05 0.05 0.05 0.05 0.01714 0.01714 0.01714
p11100 p11010 p11001 p10110 p10101 p10011 p01110 p01101
0.01 0.01 0.01 0.05 0.05 0.05 0.05 0.05
p01011 p00111 p11110 p11101 p11011 p10111 p01111 p11111
0.05 0.01714 0.01 0.01 0.01 0.05 0.05 0.01

Table 4. Assume the true probabilities as given in Table 1
which satisfy π1 = π2. For testing H0 : π1 = π2, the rejec-
tion rates of three methods for n respondents are listed.

n

100 300 500 1000

Wald 0.0318 0.0327 0.032 0.0339
score 0.0465 0.0494 0.0513 0.0513
LRT 0.0465 0.0494 0.0514 0.0513

Table 5. For testing H0 : π1 = π2, powers of the three
tests corresponding to data with the true probabilities
π1 = 0.658, π2 = 0.578, π3 = 0.481, π4 = 0.505,

and π5 = 0.479 are listed.

n

100 300 500 1000

Wald 0.153 0.356 0.548 0.843
score 0.172 0.406 0.614 0.873
LRT 0.176 0.407 0.614 0.873

Table 6. For testing H0 : π1 = π2, powers of the three tests
corresponding data with the true probabilities satisfying
π1 = 0.73, π2 = 0.69, π3 = 0.564, and π4 = π5 = 0.546
are listed.

n

100 300 500 1000

Wald 0.1769 0.4317 0.6653 0.9278
score 0.2072 0.4962 0.7184 0.9475
LRT 0.2072 0.4994 0.72 0.9475

three tests corresponding to a set of probabilities satisfying π1 = 0.73, π2 = 0.69, π3 = 0.564,

and π4 = π5 = 0.564.

From Examples 3.1–3.3, the performances of the score and likelihood ratio tests are more
similar than the Wald test. The rejection rates of the score and likelihood ratio tests are closer to
the test level 0.05. However, the rejection rate of the Wald test is less than 0.05 for all cases in
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Examples 3.1 and 3.2. In Example 3.3, the powers of the score and likelihood ratio tests are higher
than the Wald test. The powers are increasing in sample size. When the sample size is greater than
1000, the powers of the three tests are greater than 0.84.

In these examples, we choose the cases for πi’s such that the performances of the three tests
are more distinguishable. If π1 is chosen to be significantly greater than π2, then the powers of
the three tests would be 1. In this case, the performances of the three tests are very good, and it is
hard to compare them. Thus, in Example 3.3, π1 and π2 are chosen to be close to each other such
that we can compare the three tests. It indicates that the performances of the proposed methods
in many cases can be better than those in the cases we presented here.

4. Rank

The previous sections mainly discuss ranking two responses: high quality and sales price. We
are also interested in investigating which one of the five responses is the most important, and
interested in ranking the influence of the five responses.

Assume that we have k responses. For seeking the most influential response, it is necessary to
compute each mj , j = 1, . . . , k. Let m(j) be the order statistics of mj , that is, m(1) ≤ · · · ≤ m(k).
Let v(j) be the response corresponding to m(j). It is natural to rank the influence of responses in
order of m(j). That is, the most influential response is v(k), and the second influential response
is v(k−1). However, basing this only on the order of mj is risky. The proposed tests in Section 2
can be used to rank the responses. If the hypothesis π(k) = π(k−1) is rejected, where π(r) denotes
the marginal probability corresponding to v(r), then we may claim that v(k) is the most influ-
ential response. If it is not rejected, then we compare v(k) with v(j), j ≤ k − 2 sequentially.
For example, if H0:π(k) = π(a+1) is not rejected, but H0:π(k) = π(l), l ≤ a is rejected, then the
responses, v(k) is ranked first, and v(a) is ranked second. Response v(j), a + 1 ≤ j ≤ k − 1 is also
ranked first if H0:π(j) = π(a) is rejected, and is ranked between first and second if H0:π(j) = π(a)

is not rejected. By a similar argument, all the responses can be ranked. According to the rule of
ranking responses, a reasonable test should have the following property: if π(j) = π(i), i ≤ j is
rejected by test, then π(j) = π(g), g < i should also be rejected by the test with the same level
because |m(j) − m(i)| < |m(j) − m(g)|. We call this property ranking consistency. If a test has
ranking consistency property, we call it a ranking consistency test.

In this section, it will be shown that the three tests proposed in Section 2 are ranking consistent
when s = 1. However, the ranking consistency property is not valid when 1 < s ≤ k. An example
will be given to show that the tests are rank inconsistent when s = k = 5. It is also possible to
find ranking inconsistent examples for the other cases when s > 1.

THEOREM 4.1 The Wald test is ranking consistent when s = 1.

Proof Let j > i > d. For testing

H0 : π(j) = π(i) vs H1 : π(j) �= π(i), (12)

and

H ∗
0 : π(j) = π(d) vs H ∗

1 : π(j) �= π(d), (13)

the Wald test statistics for testing H0 and H ∗
0 are

|π̂(j) − π̂(i)|√
π̂(j)(1 − π̂(j)) + π̂(i)(1 − π̂(i)) + 2π̂(j)π̂(i)

n

(14)
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and
|π̂(j) − π̂(d)|√

π̂(j)(1 − π̂(j)) + π̂(d)(1 − π̂(d)) + 2π̂(j)π̂(d)

n

, (15)

respectively, when s = 1. The numerator |π̂(j) − π̂(i)| of (14) is smaller than |π̂(j) − π̂(d)|. For a
fixed j , let

W(x) = π̂(j)(1 − π̂(j)) + x(1 − x) + 2π̂(j)x. (16)

Taking the derivative of (16) with respect to x, we have

∂W(x)

∂x
= 1 − 2 ∗ x + 2π̂(j), (17)

which is equal to zero when x = (1 + 2π̂(j))/2. Hence, (16) is increasing in x for all x ≤
(1 + 2π̂(j))/2. By definition, we have π̂(i) ≤ (1 + 2π̂(j))/2 and π̂(d) ≤ (1 + 2π̂(j))/2. The above
arguments imply W(π̂(i)) ≥ W(π̂(d)), which lead to

|π̂(j) − π̂(i)|√
π̂(j)(1 − π̂(j)) + π̂(i)(1 − π̂(i)) + 2π̂(j)π̂(i)

n

≤ |π̂(j) − π̂(d)|√
π̂(j)(1 − π̂(j)) + π̂(d)(1 − π̂(d)) + 2π̂(j)π̂(d)

n

.

Thus, if H0 is rejected, then H ∗
0 is also rejected, which implies the Wald test is ranking consistent

when s = 1. �

By a similar argument, when s = 1, the ranking consistency property of generalized score test
is given in Theorem 4.2.

THEOREM 4.2 The generalized score test is ranking consistent when s = 1.

It is the same as the Wald test and the generalized score test that the likelihood ratio test is
ranking consistent in the single-choice question case.

THEOREM 4.3 The likelihood ratio test is ranking consistent when s = 1.

Proof To prove the ranking consistency of LRT, we need to show, for a fixed i, if the null
hypothesis in (12) is rejected by LRT with level α, then the null hypothesis in (13) would also be
rejected by LRT, with the same level. That is, we need to show

−2 log �(d)(j) > −2 log �(i)(j), (18)

where

�(i)(j) = ((m(i) + m(j))/(2n))m(i)+m(j)

(m(i)/n)m(i) (m(j)/n)m(j)
.

Taking the derivative of �(i)(j) with respect to m(i), we have

∂ log �(i)(j)

∂m(i)

= log(m(i) + m(j)) − log(2m(i)),

which is greater than zero because m(j) ≥ m(i). Thus, �(i)(j) is an increasing function in m(i),
which implies (18) because m(i) > m(d). Thus, the proof is completed. �
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In the multiple-choice question case, this ranking consistency property is not valid for all
data. Example 4.1 gives a set of data such that all of the three tests can be shown to be ranking
inconsistent when s = k = 5.

Example 4.4 Assume that a multiple-choice question has five answers (k = 5). We have survey
data: n10000 = 12, n01000 = 1, n00100 = 25, n00010 = 9, n00001 = 12, n11000 = 29, n10100 = 0,
n10010 = 1, n10001 = 1, n01100 = 1, n01010 = 0, n01001 = 0, n00110 = 1, n00101 = 1, n00011 = 1,

n11100 = 0, n11010 = 1, n11001 = 1, n01110 = 1, n01101 = 0, n01011 = 0, n00111 = 1, n10110 = 0,
n10101 = 0, n10011 = 1, n11110 = 0, n11101 = 0, n11011 = 1, n10111 = 0, n01111 = 0 and n11111 = 0.
Then m(5) = 47, m(4) = 35, m(3) = 30, m(2) = 17, m(1) = 19. For testing

H0 : π(5) = π(4) vs H1 : π(5) �= π(4), (19)

the values of the three statistics with respect to the Wald test, generalized score test and the
likelihood ratio test are 2.91, 2.83 and 8.73. The upper 0.05 cutoff point of standard normal
distribution and χ2

1 distribution are 1.96 and 3.84, respectively. Hence (19) is rejected by all the
three tests with level 0.05. Then, we expect that the hypothesis

H0 : π(5) = π(3) vs H1 : π(5) �= π(3), (20)

should also be rejected by the tests due to |π(5) − π(3)| > |π(5) − π(4)|. However, for testing (20),
the values of statistics corresponding to the Wald test, generalized score test and the likelihood
ratio test are 1.81, 1.94 and 3.78, which does not lead one to reject (20) in any one of the three
tests.

Although all the three tests are ranking inconsistent when s is greater than 1, the ratio of the
number of the data that ranking inconsistency phenomenon occurs to the total number of data is
low according to some simulation results. Therefore, in a real application, the three tests still can
be utilized when the data does not lead to ranking inconsistency phenomenon.

5. Conclusion

The aim of this paper is to rank the marginal probabilities of the responses in a multiple-choice
question. Three methods are proposed for solving this problem. For ranking any two specified
responses, the simulation results in Section 3 show that the proposed methods can achieve good
performance. The rejection rates and powers of LRT and score tests are similar and their rejection
rates are closer to the level of the test than the Wald tests. In Section 4, the three tests are shown to
be ranking consistent when they are utilized in ranking the responses of a single-choice question.
However, they are ranking inconsistent for the multiple-choice question case. Although, these
tests are ranking inconsistent in the multiple-choice question case, they still can be used to rank
the responses under the circumstances when the data does not lead the ranking inconsistency
phenomenon. The situation like Example 4.1 does not always happen. Thus, the three tests can
still be useful tools for solving the problem. Since most researchers in designing a multiple-
choice question are interested in this problem and there is seldom literature discussing it, the
methodologies proposed in this paper can provide a good way for analyzing this problem.
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